The nucleophilic 5-*endo-trig* cyclization of *gem*-difluoroolefins with homoallylic functional groups: syntheses of ring-fluorinated dihydroheteroaromatics

Junji Ichikawa,*a Masaki Fujiwara,a Yukinori Wada,a Tatsuo Okauchi^b and Toru Minami*^b

^a Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. E-mail: junji@chem.s.u-tokyo.ac.jp; Fax: +81-3-5841-4345; Phone: +81-3-5841-4345
^b Department of Applied Chemistry, Kyushu Institute of Technology, Sensui-cho, Tobata, Kitakyushu 804-8550, Japan

Received (in Cambridge, UK) 21st June 2000, Accepted 15th August 2000 First published as an Advance Article on the web 18th September 2000

gem-Difluoroolefins bearing homoallylic tosylamido, hydroxy, or mercapto groups undergo intramolecular nucleophilic substitution of the nitrogen, oxygen, or sulfur with loss of fluorine *via* a 5-*endo-trig* process, leading to 2-fluoro-2-pyrrolines, 5-fluoro-2,3-dihydrofurans, or -thiophenes in high yields.

5-*endo-trig* cyclization has long been considered to be a geometrically disfavored process in accord with Baldwin's rules.¹ Efficient examples of the cyclization, however, have been recently devised in radical-initiated² and electrophile-driven³ ring closures. In contrast with these two types of 5-*endo-trig* cyclizations, the corresponding nucleophile-driven ring closure has still rarely been observed in synthetic chemistry.^{4,5}

gem-Difluoroolefins possess remarkable reactivity toward nucleophilic substitution for their fluorine atoms via additionelimination processes.⁶ As one of its applications, we have recently disclosed that β , β -difluorostyrenes bearing orthonitrogen, oxygen, or sulfur heteroatoms readily undergo nucleophilic 5-endo-trig cyclization to provide ring-fluorinated heteroaromatics: 2-fluorinated indoles, benzo[b]furans, and benzo[b]thiophenes.⁵ Such unique reactivity of gem-difluoroolefins is exerted presumably due to (i) the highly polarized C-C double bond (significant single bond character implied by ¹³C NMR: ca. 150 and 90 ppm for CF₂=C), which would allow initial 5-membered ring formation, and (ii) the successive elimination of fluoride ion suppressing the reverse ring opening. In this ring-forming reaction the substrates had a benzene ring as an sp²-carbon linker between the nucleophilic functional group and the difluoroolefin part.

In order to broaden the scope of this nucleophilic 5-*endo-trig* cyclization and rule out the possibility of an 6π -electrocyclization mechanism, we investigated the reaction of *gem*-difluoroolefins **1**–3 bearing an *N*-, *O*-, or *S*-functional group which was linked by two sp³ carbons to the olefinic carbon. Herein we report a facile synthesis of selectively ring-fluorinated pyrroline **5**, dihydrofuran **4**, and dihydrothiophene **6** (Scheme 1), which are difficult to access despite the potential uses of ring-fluorinated heterocycles as components of agrochemicals, pharmaceuticals, and dyestuffs.⁷

gem-Difluoroolefin substrates were designed to bear a nucleophilic nitrogen, oxygen, or sulfur atom at the homoallylic position suitable for substitution in a 5-*endo-trig* fashion. To introduce a functional group (HY) at the *gem*-difluoro-

homoallylic position, we tried the regioselective hydroboration of 1,1-difluoro-1,3-dienes **7**, which were readily prepared from 2,2,2-trifluoroethyl toluene-*p*-sulfonate and vinyl halides in a one-pot operation according to our method.⁸ The electron-rich, non-fluorinated double bond in **7** might be more reactive toward borane reagents. Treatment of difluorodienes **7** with 9-borabicyclo[3.3.1]nonane (9-BBN) under reflux in THF selectively promoted hydroboration as expected to generate difluorohomoallylboranes, and successive treatment with alkaline aqueous hydrogen peroxide gave *gem*-difluorohomoallyl alcohols **1a–c** in good yields (Scheme 2). The corresponding nitrogen- and sulfur-containing substrates **2a–e**, **3a,b** were easily obtained from **1** as shown in Scheme 2.

The cyclization of homoallyl alcohols **1a,b** was attempted by treatment with 1.2 eq. of NaH in several solvents. While the use DMPU or NMP gave no cyclized products, DMF, DMA, or DMSO successfully promoted the 5-*endo-trig* cyclization to afford 5-fluoro-2,3-dihydrofurans **4a,b** in good yields (Table 1, Entries 1,2).⁹† KH was less effective than NaH, and high-dilution conditions ([**1a**] = 0.03 mol L⁻¹) raised the yield by 10% compared to the case of [**1a**] = 0.2 mol L⁻¹.

Moreover, we examined the 5-*endo-trig* cyclization of the substrates with *N*-nucleophiles under similar conditions. Whereas *N*-unsubstituted and *N*-butylhomoallylamines **2c**,**d** did not cyclize, the *N*-phenyl substrate **2e** afforded 4-methyl-1-phenyl-3-(3-phenylpropyl)-2-pyrrolidone **8** *via* hydrolysis of

Scheme 2 Preparation of gem-difluoroolefins 1–3. Reagents and conditions: i, 9-BBN (1.1–1.4 eq.), THF, reflux, 6–7 h; ii, aq.H₂O₂, aq. NaOH, 0 °C, 2 h; iii, BocNHTs (1 eq.), PPh₃ (1 eq.), EtO₂CN=NCO₂Et (1 eq.), THF, rt, 2 h; iv, CF₃CO₂H (15 eq.), CH₂Cl₂, rt, 2 h; v, phthalimide (1 eq.), PPh₃ (1 eq.), EtO₂CN=NCO₂Et (1 eq.), THF, rt, 2 h; vi, NH₂NH₂•H₂O (2 eq.), EtOH, reflux, 2 h; vii, TSCl (1 eq.), Py, rt, 8 h; viii, BuⁿNH₂ (26 eq.), reflux, 6 h; ix, PhNH₂ (26 eq.), reflux, 6 h; x, AcSNa (1 eq.), DMF, 70 °C, 3 h; xi, K₂CO₃ (1 eq.), MeOH, 0 °C, 1 h.

Table 1 Synthesis of ring-fluorinated dihydroheteroaromatics 4-6a

	Entry	YH	\mathbb{R}^1	\mathbb{R}^2	Substrate	Base (eq.)	Time	Product	Yield $(\%)^b$
	1	OH	CH ₂ CH(Me)Ph	Me	1a ^c	NaH (1.2)	7 h	$4a^c$	67
	2	OH	Bu ⁿ	CH ₂ Ph	1b	NaH (1.2)	11 h	4b	62
	3	PhNH	(CH ₂) ₃ Ph	Me	2e	NaH (1.1)	24 h	8	62
	4	TsNH	CH ₂ CH(Me)Ph	Me	$2\mathbf{b}^{c}$	NaH (1.1)	4 d	5 ^c	80
	5	SH	$(CH_2)_3Ph$	Me	3b	NaH (1.1)	4 h	6	76
	6	SC(O)Me	$(CH_2)_3Ph$	Me	3a	NaOMe (1.0)	8 h	6	69
^a The reaction was conducted in DMF at 90 °C. [Substrate] = 0.02–0.03 mol L ⁻¹ . ^b Isolated yield. ^c 1:1 Diastereomer mixture.									

Scheme 3 Competitive cyclization: 5-endo-trig vs. 5-exo-trig Reagents and conditions: i, NaH (1.1 eq.), DMF, 100 °C, 0.3 h.

the expected 2-fluoropyrroline (Entry 3). The *N*-4,4-difluorobut-3-enyltoluene-*p*-sulfonamide **2b** underwent the desired ring closure to give 2-fluorinated pyrroline **5** in 80% yield (Entry 4).¹⁰⁺

As a further example of the cyclization, the intramolecular substitution of sulfur nucleophiles (which Baldwin's rules allow for the normally disfavored 5-*endo-trig* process) was also examined.^{1b} The reaction of **3b** under similar conditions to those for **1** and **2** provided 5-fluorinated dihydrothiophene **6** in 76% yield (Entry 5).¹¹ In addition, treatment of thioacetic S-acid ester **3a** with sodium methoxide allowed the cyclization *via in situ* generated thiolate to give **6** (Entry 6).§

In order to demonstrate the favored nature of 5-endo-trig cyclization in gem-difluoroolefins, we tried the competitive reaction between 5-endo-trig and 5-exo-trig processes. The β , β -difluoro- α , β -unsaturated ester 9 bearing a 2-toluene-*p*-sulfona-midoethyl group was designed as a substrate which could undergo the Michael reaction and the transacylation via 5-endo-trig and 5-exo-trig processes, respectively. Compound 9 was prepared by the S_N2' reaction of methyl 2-(trifluoromethyl)propenoate¹² with benzyloxymethylcopper¹³ and successive deprotection of the benzyl group, followed by the introduction of an NHTs group according to the same procedure for **2b**. On treatment of **9** with NaH in DMF, the 5-endo-trig cyclization proceeded to lead exclusively to the 2-fluorinated pyrroline derivative **10** as shown in Scheme 3.¶

In conclusion, normally 'disfavored' 5-*endo-trig* ring closures are successfully achieved in the intramolecular addition– elimination reaction of *gem*-difluoroolefins bearing nucleophilic heteroatoms linked by two sp³ carbons to the vinylic carbon as well as two sp² carbons.⁵ Thus, *gem*-difluorohomoallylamine, alcohol, and thiol derivatives open a new way to the syntheses of selectively ring-fluorinated heterocyclic compounds.

We gratefully acknowledge the financial support for this research by a grant from Central Glass Co., Ltd. to J. I. We also thank F-Tech, Inc. for a generous gift of 2-(trifluoromethyl)propenoic acid.

Notes and references

† **4b**: $\delta_{\rm F}$ (471 MHz, CDCl₃–C₆F₆) 42.4 (1F, s).

 $\ddagger 5: \delta_{\rm F}$ (471 MHz, CDCl₃–C₆F₆) 36.2 (0.5F, s), 36.6 (0.5F, s). § 6: δ_F (471 MHz, CDCl₃–C₆F₆) 35.7 (1F, br s). ¶ The fluorine-free analogue, dimethyl 4-methyleneglutamate was reported to cyclize to 5-methoxycarbonyl-3-methylene-2-pyrrolidone *via* 5-*exo-trig* pathway without formation of the 5-*endo-trig* product.^{1b,14} **|| 10:** $\delta_{\rm F}$ (471 MHz, CDCl₃-C₆F₆) 61.8 (1F, t, $J_{\rm FH}$ = 4.8 Hz).

- (a) J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734; (b) J. E. Baldwin, J. Cutting, W. Dupont, L. Kruse, L. Silberman and R. C. Thomas, J. Chem. Soc., Chem. Commun., 1976, 736; (c) J. E. Baldwin, R. C. Thomas, L. I. Kruse and L. Silberman, J. Org. Chem., 1977, 42, 3846.
- 2 For recent reports, see: A. J. Clark, C. P. Dell, J. M. Ellard, N. A. Hunt and J. P. McDonaph, *Tetrahedron Lett.*, 1999, **40**, 8619; D. T. Davies, N. Kapur and A. F. Parsons, *Tetrahedron Lett.*, 1999, **40**, 8615 and references cited therein; H. Ishibashi, A. Toyao and Y. Takeda, *Synlett*, 1999, 1468 and references cited therein; S. Bogen, M. Gulea, L. Fensterbank and M. Malacria, J. Org. Chem., 1999, **60**, 4920 and references cited therein; J. Cassayre and S. Z. Zard, *Synlett*, 1999, 501; M. Ikeda, M. Hamada, T. Yamashita, K. Matsui, T. Sato and H. Ishibashi, J. Chem. Soc., Perkin Trans. 1, 1999, 1949; A. Kittaka, T. Asakura, T. Kuze, H. Tanaka, N. Yamada, K. T. Nakamura and T. Miyasaka, J. Org. Chem., 1999, **64**, 7081; Y. Nonami, J. Baran, J. Sosnicki, H. Mayr, A. Masuyama and M. Nojima, J. Org. Chem., 1999, **64**, 4060; C. Chatgilialoglu, T. Gimisis and G. P. Spada, Chem. Eur. J., 1999, **5**, 2866; J. Gao and J. Rusling, J. Org. Chem., 1998, **63**, 218.
- 3 For recent reports, see: A. D. Jones, D. W. Knight, A. L. Redfern and J. Gilmore, *Tetrahedron Lett.*, 1999, **40**, 3267 and references cited therein; S. B. Bedford, K. E. Bell, F. Bennett, C. J. Hayes, D. W. Knight and D. E. Shaw, *J. Chem. Soc., Perkin Trans. 1*, 1999, 2143 and references cited therein; F. Bravo, M. Kassou and S. Castillón, *Tetrahedron Lett.*, 1999, **40**, 1187.
- 4 D. Craig, N. J. Ikin, N. Mathews and A. M. Smith, *Tetrahedron*, 1999, **55**, 13471 and references cited therein. For the 5-*endo-trig* process onto a π -allylpalladium system, see: S. Thorimbert and M. Malacria, *Tetrahedron Lett.*, 1998, **39**, 9659. For the *ab initio* calculation on the cyclization of 4,4-difluorobut-3-en-1-ol, see: T. Yamazaki, S. Hiraoka, J. Sakamoto and T. Kitazume, J. Phys. Chem. A, 1999, **103**, 6820; T. Yamazaki, S. Hiraoka, J. Sakamoto and T. Kitazume, J. Fluorine Chem., 2000, **101**, 309.
- 5 J. Ichikawa, Y. Wada, T. Okauchi and T. Minami, *Chem. Commun.*, 1997, 1537.
- 6 L. G. Sprague, K. B. Baucom, S. F. Sellers and R. A. DuBoisson, in *Chemistry of Organic Fluorine Compounds II*, ed. M. Hudlicky and A. E. Pavlath, ACS Monograph 187, American Chemical Society, Washington, DC, 1995, p. 729.
- 7 M. J. Silvester, Adv. Heterocyclic Chem., 1994, **59**, 1; L. G. Sprague, K. B. Baucom, S. F. Sellers and R. A. DuBoisson, Aldrichim. Acta, 1991, **24**, 31; Organofluorine Chemistry, Principles and Commercial Applications, ed. R. E. Banks, B. E. Smart and J. C. Tatlow, Plenum Press, New York, 1994.
- 8 J. Ichikawa, C. Ikeura and T. Minami, Synlett, 1992, 739.
- 9 For the synthesis of fluorofurans, see: A. K. Forrest and P. J. O'Hanlon, *Tetrahedron Lett.*, 1995, **36**, 2117; K. Burger and B. Helmreich, *J. Chem. Soc., Chem. Commun.*, 1992, 348; H. L. Sham and D. A. Betebenner, *J. Chem. Soc., Chem. Commun.*, 1991, 1134.
- 10 For the synthesis of fluoropyrroles, see: M. S. Novikov, A. F. Khlebnikov, E. S. Sidorina and R. R. Kostikov, J. Fluorine Chem., 1998, 90, 117 and references cited therein.
- 11 For the synthesis of fluorothiophenes, see: D. F. Andrés, E. G. Laurent and B. S. Marquet, *Tetrahedron Lett.*, 1997, **38**, 1049 and references cited therein.
- 12 T. Kitazume and T. Ohnogi, *Synthesis*, 1988, 615; T. Fuchikami, Y. Shibata and Y. Suzuki, *Tetrahedron Lett.*, 1986, 27, 3173.
- 13 D. K. Hutchinson and P. L. Fuchs, J. Am. Chem. Soc., 1987, 109, 4930.
- 14 For examples where *N*-substituents played an important role, see: B. Tarnchompoo, C. Thebtaranonth and Y. Thebtaranonth, *Tetrahedron Lett.*, 1987, **28**, 6675; A. Padwa and B. H. Norman, *J. Org. Chem.*, 1990, **55**, 4801.